最新云南数学中考考点归纳表(3篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
云南数学中考考点归纳表篇一
解析式顶点坐标对称轴
y=ax^2(0,0)x=0
y=a(x-h)^2(h,0)x=h
y=a(x-h)^2+k(h,k)x=h
y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a)x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点a(x?,0)和b(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=
(a≠0)的两根.这两点间的距离ab=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
云南数学中考考点归纳表篇二
1、在一个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a所形成的图形叫做圆。固定的端点o叫做圆心,线段oa叫做半径
圆上各点到定点的距离都等于定长
到定点的距离等于定长的点都在同个平面上
因此,圆心为o、半径为r的圆可以看成所有到定点o距离等于定长r的点的集合
2、弧、弦、圆心角
弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆
弦:连接圆上任意两点的线段,叫做弦。经过圆心的弦,叫做直径
圆心角:顶点在圆心的角
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴
圆是中心对称图形,圆心o是它的对称中心
3、圆周角
顶点在圆上,并且两边都圆相交的角叫做圆周角。
4、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半
推论:
半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。
推论:
圆的内接四边形对角之和为180度
注意:对内接四边形的判定,必须4个顶点都在圆上。
5、点和圆的位置关系
点p在圆内d点p在圆上d=r
点p在圆外d>r
6、不在同一直线上的三个点确定一个圆
注意:不在同一直线这一要点
经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆
外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心
特殊的:直角△的外心在斜边上的中点。
一般求△外心的题往往是直角△或者等腰△,等腰△请结合垂径定理和勾股定理
7、直线和圆的位置关系
直线l和圆o相交(有两个公共点)d直线l和圆o相切(有一个公共点)d=r直线为切线,点为切点
直线l和圆o相离(没有公共点)d>r
8、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
在灵活运用该定理的同时,切莫忘记第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们需要用到此方法去判定相切)
9、切线的性质定理
圆的切线垂直于过切点的半径
这两个定理的运用:前者是不清楚直线与圆的关系,进行判断。后者是已知直线与圆相切,进行性质分析。
10、切线长定理
经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。
<
<
云南数学中考考点归纳表篇三
一、定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
二、二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点p(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点a(x?,0)和b(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
三、二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
四、抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点p。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点p,坐标为p(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,p在y轴上;当δ=b^2-4ac=0时,p在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
δ=b^2-4ac>0时,抛物线与x轴有2个交点。
δ=b^2-4ac=0时,抛物线与x轴有1个交点。
δ=b^2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
五、二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
上一篇: 最新二年级作文五一劳动节200字 二年级作文五一劳动节趣事(五篇) 下一篇: 采购部经理岗位职责描述(六篇)
分类导航
- 唐诗三百首
- 古诗三百首
- 宋词精选
- 元曲精选
- 古诗十九首
- 小学古诗
- 小学生必背古诗80首
- 小学生必背古诗70首
- 写景的古诗
- 咏物诗
- 描写春天的古诗
- 描写夏天的古诗
- 描写秋天的古诗
- 描写冬天的古诗
- 描写雨的古诗
- 描写雪的古诗
- 描写风的古诗
- 描写花的古诗
- 描写梅花的古诗
- 描写荷花的古诗
- 描写柳树的古诗
- 描写月亮的古诗
- 描写山的古诗
- 描写水的古诗
- 描写长江的古诗
- 描写黄河的古诗
- 描写儿童的古诗
- 山水诗
- 田园诗
- 边塞诗
- 含有地名的古诗
- 节日古诗
- 春节古诗
- 元宵节古诗
- 清明节古诗
- 端午节古诗
- 七夕古诗
- 中秋节古诗
- 重阳节古诗
- 古代抒情诗
- 伤怀的古诗
- 咏史怀古诗
- 爱国古诗
- 送别诗
- 离别诗
- 思乡诗
- 思念的诗
- 爱情古诗
- 励志古诗
- 哲理诗
- 闺怨诗
- 赞美老师的古诗
- 赞美母亲的古诗
- 关于友情的古诗
- 关于战争的古诗
- 忧国忧民的古诗
- 婉约诗词
- 豪放诗词
- 人生必背古诗
- 论语
- 诗经
- 孙子兵法
- 三十六计
- 史记
- 周易
- 山海经
- 资治通鉴
- 黄帝内经
- 了凡四训
- 梦溪笔谈
- 千字文
- 世说新语
- 左传
- 大学
- 中庸
- 尚书
- 礼记
- 周礼
- 仪礼
- 庄子
- 鬼谷子
- 老子
- 孟子
- 墨子
- 荀子
- 韩非子
- 列子
- 淮南子
- 管子
- 尉缭子
- 吴子
- 伤寒论
- 天工开物
- 素书
- 汉书
- 文心雕龙
- 吕氏春秋
- 孝经
- 孔子家语
- 颜氏家训
- 孙膑兵法
- 搜神记
- 笑林广记
- 楚辞
- 乐府诗集
- 论衡
- 百战奇略
- 战国策
- 三国志注
- 将苑
- 六韬三略
- 反经
- 公孙龙子
- 司马法
- 逸周书
- 黄帝四经
- 清官贪官传
- 睡虎地秦墓竹简
- 贞观政要
- 金刚经
- 佛说四十二章经
- 水经注
- 农桑辑要
- 文昌孝经
- 六祖坛经
- 地藏经
- 徐霞客游记
- 弟子规
- 增广贤文
- 幼学琼林
- 冰鉴
- 容斋随笔
- 智囊
- 围炉夜话
- 商君书
- 魏书
- 周书
- 三字经
- 子夏易传
- 笠翁对韵
- 公羊传
- 尔雅
- 三国志
- 后汉书
- 明史
- 晋书
- 宋史
- 新唐书
- 旧唐书
- 隋书
- 元史
- 宋书
- 北齐书
- 新五代史
- 陈书
- 金史
- 南齐书
- 梁书
- 旧五代史
- 辽史
- 北史
- 南史
- 续资治通鉴
- 明季北略
- 浮生六记
- 高士传
- 大唐西域记
- 传习录
- 小窗幽记
- 国语
- 说苑
- 本草纲目
- 神农本草经
- 难经
- 千金方
- 奇经八脉考
- 濒湖脉学
- 棋经十三篇
- 古画品录
- 茶经
- 百家姓
- 智囊(选录)
- 罗织经
- 朱子家训
- 陶庵梦忆
- 红楼梦
- 三国演义
- 聊斋志异
- 西游记
- 水浒传
- 儒林外史
- 封神演义
- 太平广记
- 警世通言
- 镜花缘
- 醒世恒言
- 剪灯新话
- 隋唐演义
- 初刻拍案惊奇
- 老残游记
- 博物志
- 孽海花
- 三侠五义
- 穆天子传
- 二刻拍案惊奇
- 喻世明言
- 说唐全传
- 老残游记续集
- 三刻拍案惊奇
- 四十二章经
- 心经
- 法华经
- 华严经
- 楞伽经
- 无量寿经
- 圆觉经
- 易传
- 抱朴子
- 阴符经
- 黄庭经
- 文子
- 太玄经
- 悟真篇
- 声律启蒙
- 随园诗话