2023年证明定积分的不等式(4篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
证明定积分的不等式篇一
我们把形如(为常数或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数型,求证例1(2007年全国高中数学联赛江苏赛区第二试第二题已知正整数
.分析 这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数知,在区间 并作图象如图1所示.因函数在上是凹函数,由函数图象可上的个矩形的面积之和小于曲边梯形的面积,图1
即,因为,所以.所以.例2 求证
.证明 构造函数而函数在和小于曲边梯形的面积,又,上的个矩形的面积之
上是凹函数,由图象知,在区间
图
2即,所以
.例
3证明。
证明
构造函数区间 上,因,又其函数是凹函数,由图3可知,在个矩形的面积之和小于曲边梯形的面积,图3 即
.所以
.二、型
例4 若,求证:.证明 不等式链的左边是通项为项之和,中间的通项不等式的数列的前项之和,右边通项为项之和.故只要证当的数列的前时这三个数列的可当作是某数列的前
成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式
成立,从而所证不等式成立.例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为(ⅰ)用表示出(ⅱ)若; 在内恒成立,求的取值范围;.的图象在点(ⅲ)证明:
.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明
(ⅲ)不等式项之和,我们也可把右边当作是通项为的数列的前项之和,此式适合即,左边是通项为,则当,故只要证当的数列的前时,时,也就是要证
由此构造函数积,即,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面
.图5
而立.,所以,故原不等式成
证明定积分的不等式篇二
利用定积分证明数列和型不等式
我们把形如(为常数)
或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型
例1(2007年全国高中数学联赛江苏赛区第二试第二题)
已知正整数,求证
.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数
数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图
1即,因为,所以.所以
.例2求证
.证明构造函数而函数
在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和
小于曲边梯形的面积,图
2即,所以
.例3证明。
证明构造函数知,在区间
上,因,又其函数是凹函数,由图3可
个矩形的面积之和小于曲边梯形的面积,图
3即
.所以
.二、型
例4若,求证:.证明不等式链的左边是通项为前
项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数
可当作是某数列的前
列的通项不等式
成立即可.构造函数,因为,作的图象,由图4知,在区间
上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两
个矩形面积之间,即,而,故不等式
成立,从而所证不等式成立.图
4例5(2010年高考湖北卷理科第21题)已知函数
处的切线方程为的图象在点
.(ⅰ)用表示出(ⅱ)若;
在内恒成立,求的取值范围;
(ⅲ)证明:
.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式
列的前项之和,我们也可把右边当作是通项为
左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当
时,即,也就是要证
.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面
积,即
.图5
而
故原不等式成立.,所以,
证明定积分的不等式篇三
利用定积分证明数列和型不等式
我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型
例1(2007年全国高中数学联赛江苏赛区第二试第二题)已知正整数,求证
.分析
这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数数图象可知,在区间
并作图象如图1所示.因函数在上是凹函数,由函
上的个矩形的面积之和小于曲边梯形的面积,图1 即,因为,所以.所以
.例2 求证
.证明 构造函数
而函数在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和小于曲边梯形的面积,图
2即,所以.例3 证明。
证明 构造函数可知,在区间 上,因,又其函数是凹函数,由图
3个矩形的面积之和小于曲边梯形的面积,图3
即
.所以
.二、型
例4 若,求证:.证明 不等式链的左边是通项为前项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数
可当作是某数列的前列的通项不等式
成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式
成立,从而所证不等式成立.图4
例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为
(ⅰ)用表示出 ;
.的图象在点(ⅱ)若 在内恒成立,求的取值范围;
(ⅲ)证明:
.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式数列的前项之和,我们也可把右边当作是通项为
左边是通项为的数列的前项之和,则当的时,此式适合,故只要证当 时,即,也就是要证
.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面积,即
.图
5而,所以,故原不等式成立.点评 本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,
证明定积分的不等式篇四
利用定积分证明数列和型不等式
湖北省阳新县高级中学 邹生书
我们把形如(为常数)
或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型
例1(2007年全国高中数学联赛江苏赛区第二试第二题)
已知正整数,求证
.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数
数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图
1即,因为,所以.所以
.例2求证
.证明构造函数而函数
在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和
小于曲边梯形的面积,图
2即,所以
.例3证明。
证明构造函数知,在区间
上,因,又其函数是凹函数,由图3可
个矩形的面积之和小于曲边梯形的面积,图
3即
.所以
.二、型
例4若,求证:.证明不等式链的左边是通项为前
项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数
可当作是某数列的前
列的通项不等式
成立即可.构造函数,因为,作的图象,由图4知,在区间
上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两
个矩形面积之间,即,而,故不等式
成立,从而所证不等式成立.图
4例5(2010年高考湖北卷理科第21题)已知函数
处的切线方程为
.的图象在点
(ⅰ)用表示出(ⅱ)若;
在内恒成立,求的取值范围;
(ⅲ)证明:
.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式
列的前项之和,我们也可把右边当作是通项为
左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当
时,即,也就是要证
.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面
积,即
.图
5而
故原不等式成立.,所以,点评本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,精彩的解法不是空穴来风而是理性思维的必然结果.作者简介:邹生书,男,1962年12月出生,湖北阳新县人.现任教于阳新县高级中学,中学数学高级教师,黄石市骨干教师.近四年来在《数学通讯》、《数学通报》、《中学数学教学参考》、《中学数学教学》、《中学数学月刊》、《中学数学》、《中学教研》、《中学数学研究》、《中小学数学》、《高中数学教与学》、《中学生数学》、《河北理科教学研究》、《数理天地》、《数理化解题研究》等近二十种期刊上发表教学教研文章百余篇,在人教网中学数学栏目发表文章二十多篇.
上一篇: 做生意的经验方法 做生意的经验和心得(4篇) 下一篇: 六年级音乐教学计划下册 六年级音乐教学计划上册人教版(14篇)
分类导航
- 唐诗三百首
- 古诗三百首
- 宋词精选
- 元曲精选
- 古诗十九首
- 小学古诗
- 小学生必背古诗80首
- 小学生必背古诗70首
- 写景的古诗
- 咏物诗
- 描写春天的古诗
- 描写夏天的古诗
- 描写秋天的古诗
- 描写冬天的古诗
- 描写雨的古诗
- 描写雪的古诗
- 描写风的古诗
- 描写花的古诗
- 描写梅花的古诗
- 描写荷花的古诗
- 描写柳树的古诗
- 描写月亮的古诗
- 描写山的古诗
- 描写水的古诗
- 描写长江的古诗
- 描写黄河的古诗
- 描写儿童的古诗
- 山水诗
- 田园诗
- 边塞诗
- 含有地名的古诗
- 节日古诗
- 春节古诗
- 元宵节古诗
- 清明节古诗
- 端午节古诗
- 七夕古诗
- 中秋节古诗
- 重阳节古诗
- 古代抒情诗
- 伤怀的古诗
- 咏史怀古诗
- 爱国古诗
- 送别诗
- 离别诗
- 思乡诗
- 思念的诗
- 爱情古诗
- 励志古诗
- 哲理诗
- 闺怨诗
- 赞美老师的古诗
- 赞美母亲的古诗
- 关于友情的古诗
- 关于战争的古诗
- 忧国忧民的古诗
- 婉约诗词
- 豪放诗词
- 人生必背古诗
- 论语
- 诗经
- 孙子兵法
- 三十六计
- 史记
- 周易
- 山海经
- 资治通鉴
- 黄帝内经
- 了凡四训
- 梦溪笔谈
- 千字文
- 世说新语
- 左传
- 大学
- 中庸
- 尚书
- 礼记
- 周礼
- 仪礼
- 庄子
- 鬼谷子
- 老子
- 孟子
- 墨子
- 荀子
- 韩非子
- 列子
- 淮南子
- 管子
- 尉缭子
- 吴子
- 伤寒论
- 天工开物
- 素书
- 汉书
- 文心雕龙
- 吕氏春秋
- 孝经
- 孔子家语
- 颜氏家训
- 孙膑兵法
- 搜神记
- 笑林广记
- 楚辞
- 乐府诗集
- 论衡
- 百战奇略
- 战国策
- 三国志注
- 将苑
- 六韬三略
- 反经
- 公孙龙子
- 司马法
- 逸周书
- 黄帝四经
- 清官贪官传
- 睡虎地秦墓竹简
- 贞观政要
- 金刚经
- 佛说四十二章经
- 水经注
- 农桑辑要
- 文昌孝经
- 六祖坛经
- 地藏经
- 徐霞客游记
- 弟子规
- 增广贤文
- 幼学琼林
- 冰鉴
- 容斋随笔
- 智囊
- 围炉夜话
- 商君书
- 魏书
- 周书
- 三字经
- 子夏易传
- 笠翁对韵
- 公羊传
- 尔雅
- 三国志
- 后汉书
- 明史
- 晋书
- 宋史
- 新唐书
- 旧唐书
- 隋书
- 元史
- 宋书
- 北齐书
- 新五代史
- 陈书
- 金史
- 南齐书
- 梁书
- 旧五代史
- 辽史
- 北史
- 南史
- 续资治通鉴
- 明季北略
- 浮生六记
- 高士传
- 大唐西域记
- 传习录
- 小窗幽记
- 国语
- 说苑
- 本草纲目
- 神农本草经
- 难经
- 千金方
- 奇经八脉考
- 濒湖脉学
- 棋经十三篇
- 古画品录
- 茶经
- 百家姓
- 智囊(选录)
- 罗织经
- 朱子家训
- 陶庵梦忆
- 红楼梦
- 三国演义
- 聊斋志异
- 西游记
- 水浒传
- 儒林外史
- 封神演义
- 太平广记
- 警世通言
- 镜花缘
- 醒世恒言
- 剪灯新话
- 隋唐演义
- 初刻拍案惊奇
- 老残游记
- 博物志
- 孽海花
- 三侠五义
- 穆天子传
- 二刻拍案惊奇
- 喻世明言
- 说唐全传
- 老残游记续集
- 三刻拍案惊奇
- 四十二章经
- 心经
- 法华经
- 华严经
- 楞伽经
- 无量寿经
- 圆觉经
- 易传
- 抱朴子
- 阴符经
- 黄庭经
- 文子
- 太玄经
- 悟真篇
- 声律启蒙
- 随园诗话